COR1 Current Status and Future Plans

William Thompson

Adnet Systems, Inc.

Joseph Davila

NASA Goddard Space Flight Center

5th SECCHI Consortium Meeting March 5-8, 2007 Orsay, France

Scattered Light (preflight)

- \bullet Overall scattered light levels are much better than the $10^{\text{-}6}~B/B_{\text{sun}}$ requirement.
- Small areas with higher scatter due to features on front surface of field lens.

Inflight Comparison

Inflight scattered light levels match the predictions from preflight testing.

COR-1B

COR-1A

Behind objective switched out at Cape actually cleaner than preflight testing.

Inflight performance

Concept of Operations

- Three images are taken at polarizer positions of 0°, 120°, and 240°.
- Combining the three images allows one to derive both the polarized brightness (pB) and the total brightness (B).
- The polarized brightness calculation rejects most of the stray light.

Image showing 3 separate polarization components

Linearity

Detectors on both COR1A and COR1B are slightly non-linear

Stability

- Both COR1A and COR1B have shown decreases in the scattered light since their doors were opened, by about 15%
- Only the diffuse scattered light shows a decrease the discrete features remain constant
- COR1B shows some evolution between the 3 polarizer components.

Jitter Sensitivity

- Spacecraft jitter affects COR1 scattered light pattern.
- Spacecraft jitter greatly improved on Jan 23 (Ahead) and Jan 24 (Behind).
- Still studying how to model jitter effects in data.

Roll Maneuvers

- Roll maneuvers allow the separation of instrumental and coronal effects.
 - Coronal hole assumed to be zero intensity
- Derived scattered light suitable for extracting *pB*
 - **B** affected more by instrumental evolution
 - Behind evolution also affecting *pB* calculation
- There are several roll maneuvers now on each spacecraft.

SWAVES roll on Ahead, Dec 18th

Compression

- Image compression is required to be able to bring down data with sufficient cadence to see all CMEs.
- ICER is limited to a dynamic range of just over 13 bits.
- Dynamic range in COR1 is limited by scattered light
 - Top end limited by brightest part of the image, near occulter.
 - Bottom end limited by Poisson noise in fainter outer regions.
 - Resulting dynamic range is less than 13 bits for 2x2 binning for both COR1A and COR1B
- Strategy is to select a compression mode that keeps the digital noise below the Poisson noise.
 - Binning to 1024x1024 first improves statistics
 - Optics designed for 1024x1024 operation
 - Selected ICER 05 compression mode
 - Space weather: 128x128 binned with ICER 11

Observing Plans

- Three polarizer positions (0°, 120°, 240°) taken in rapid sequence
- All images binned to 1024x1024 resolution
- Currently planning on IP-binning for better linearity
 - May need to go to CCD-binning to reduce radiationinduced noise
- Images scaled to 13 bits and compressed with ICER 05
- Complete polarizer sequence repeated every 10 minutes
 - SSR2 data decreases cadence to 5 minutes for few hours

Removing Scattered Light

- Polarized brightness (pB) calculation removes much of the scattered light.
 - Still some residual scattered light
- Running and base difference movies also work well
 - Jitter sensitivity less for B than for pB
- Other strategies include:
 - Removing model derived from calibration rolls
 - Works well for pB
 - Instrument evolution limits effectiveness for B
 - Monthly minimum image technique
 - Effect of instrument evolution not yet clear
 - Daily minimum image technique
 - Mainly effective for CMEs
- Above models are applied to each polarization component before combining into pB

Without Background Subtraction

• Most of the scattered light is removed by the *pB* calculation.

Behind

pВ

Running Difference

• Running differences appear best in brightness images.

Behind

B

Subtracting Rotation Model

 Most representative of corona. Instrument evolution so far restricts use to *pB*.

Behind

pВ

Subtracting Daily Minimum

• Below is a demonstration of subtracting the daily minimum image from polarized brightness data

Behind

pB

Subtracting Daily Minimum

• It also works for total brightness. Some evolution in background can be seen for Ahead.

Behind

B

Instrument Performance

- •When the 3 polarization angles are combined, the pB of the K corona is recovered from the unpolarized background
- •CMEs are visible from the occulter to the detector edge.

- •The measured straylight is lower than the model predictions.
- •The K corona is fainter than the stray light, but significantly brighter than the noise floor.

Resolution

- Resolution tested by projecting Air Force resolution test target onto various portions of the detector.
- Measurements done in vacuum, to avoid problems with air vs. vacuum focal lengths.
- Were able to resolve with high contrast all the way down to the Nyquist frequency.

Sample subfield image (COR-1A)

Flat Field

- The field is highly flat, with discrete areas of vignetting near the occulter and camera aperture edges.
- The flat field is monitored in flight with the diffuser window mounted in the door.

Polarization Response

- **Polarcor** linear polarizers provide better than 10,000:1 contrast ratio.
- Hollow core motor rotates polarizer in beam to angles 0°, 120°, and 240° to derive polarized brightness.
- Rotation of polarizer moves image on detector by ~0.3 pixels for both COR-1A & B. Minimized by putting slight tilt on polarizer.

Measurements of polarization response compared to fitted curve (COR-1A)